Distance

Distance is a scalar quantity. It is a measure of the total length you have moved.

Displacement

Displacement is a vector quantity. It is a measure of how far you are from the starting position.

distance travelled $=400 \mathrm{~m}$
displacement = 0

If you complete a lap of an athletics track:

Distance and Displacement are measured in metres, m

Speed

Speed is a measure of how the distance changes with time. Since it is dependent on speed it too is a scalar.

$$
\text { speed }=\frac{\Delta d}{\Delta t}
$$

Velocity

Velocity is measure of how the displacement changes with time. Since it depends on displacement it is a vector too.

$$
v=\frac{\Delta s}{\Delta t}
$$

Speed and Velocity are is measured in metres per second, m / s
Time is measured in seconds, s

Acceleration

Acceleration is the rate at which the velocity changes. Since velocity is a vector quantity, so is acceleration. With all vectors, the direction is important. In questions we decide which direction is positive (e.g. $\rightarrow+$ ve) If a moving object has a positive velocity: $\quad *$ a positive acceleration means an increase in the velocity

* a negative acceleration means a decrease in the velocity (it begins the 'speed up' in the other direction)
If a moving object has a negative velocity:
* a positive acceleration means an increase in the velocity (it begins the 'speed up' in the other direction)
* a negative acceleration means a increase in the velocity

If an object accelerates from a velocity of u to a velocity of v, and it takes t seconds to do it then we can write the equations as $a=\frac{(v-u)}{t}$ it may also look like this $a=\frac{\Delta v}{\Delta t}$ where Δ means the 'change in'

Acceleration is measured in metres per second squared, $\mathrm{m} / \mathrm{s}^{\mathbf{2}}$

Uniform Acceleration

In this situation the acceleration is constant - the velocity changes by the same amount each unit of time.
For example: If acceleration is $2 \mathrm{~m} / \mathrm{s}^{2}$, this means the velocity increases by $2 \mathrm{~m} / \mathrm{s}$ every second.

Time (s)	0	1	2	3	4	5	6	7
Velocity $(\mathrm{m} / \mathrm{s})$	0	2	4	6	8	10	12	14
Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$		2	2	2	2	2	2	2

Non-Uniform Acceleration

In this situation the acceleration is changing - the velocity changes by a different amount each unit of time. For example:

Time (s)	0	1	2	3	4	5	6	7
Velocity $(\mathrm{m} / \mathrm{s})$	0	2	6	10	18	28	30	44
Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$		2	4	6	8	10	12	14

