Motion graphs

In motion graphs, we often use the gradient of a line and the area under a line to find values of quantities. **Gradient**

We calculate the gradient by choosing two points on the line and calculating the change in the y axis (up/down) and the change in the x axis (across). Δ_{11}

Area under graph

 $gradient = \frac{\Delta y}{\Delta x}$

In IB Physics, we will not be asked to calculate the area under curves, only straight lines.

We do this be breaking the area into rectangles (base x height) and triangles (½ base x height).

Displacement-time graphs

Graph A shows that the displacement stays at 3m, it is stationary.

Graph B shows that the displacement increases by the same amount each second, it is travelling with constant velocity.

Graph C shows that the displacement covered each second increases each second, it is accelerating.

Since $gradient = \frac{\Delta y}{\Delta x}$ and $y = displacement and <math>x = time \Rightarrow gradient = \frac{\Delta s}{\Delta t} \Rightarrow \boxed{gradient = velocity}$

Graph A shows that the velocity stays at 4m/s, it is moving with constant velocity. Graph B shows that the velocity increases by the same amount each second, it is accelerating by the same amount each second (uniform acceleration).

Graph C shows that the velocity increases by a larger amount each second, the acceleration is increasing (nonuniform acceleration).

Since
$$gradient = \frac{\Delta y}{\Delta x}$$
 and y = velocity and x = time \rightarrow $gradient = \frac{\Delta v}{\Delta t} \rightarrow$ $gradient = acceleration$
area = base x height \rightarrow area = time x velocity \rightarrow $area = displacement$

This graph show the velocity decreasing in one direction and increasing in the opposite direction.

If we decide that \leftarrow is negative and \rightarrow is positive then the graph tells us:

The object is initially travels at 5 m/s \rightarrow

It slows down by 1m/s every second

After 5 seconds the object has stopped

It then begins to move \leftarrow

It gains 1m/s every second until it is travelling at 5m/s ←