Motion graphs

In motion graphs, we often use the gradient of a line and the area under a line to find values of quantities.

Gradient

We calculate the gradient by choosing two points on the line and calculating the change in the y axis (up/down) and the change in the x axis (across).

Area under graph

$$
\text { gradient }=\frac{\Delta y}{\Delta x}
$$

In IB Physics, we will not be asked to calculate the area under curves, only straight lines.
We do this be breaking the area into rectangles (base x height) and triangles ($1 / 2$ base x height).

Displacement-time graphs

Graph A shows that the displacement stays at 3 m , it is stationary.
Graph B shows that the displacement increases by the same amount each second, it is travelling with constant velocity.
Graph C shows that the displacement covered each second increases each second, it is accelerating.
Since gradient $=\frac{\Delta y}{\Delta x}$ and $y=$ displacement and $x=$ time \rightarrow gradient $=\frac{\Delta s}{\Delta t} \rightarrow$ gradient $=$ velocity

Velocity- time graphs

Graph A shows that the velocity stays at $4 \mathrm{~m} / \mathrm{s}$, it is moving with constant velocity.
Graph B shows that the velocity increases by the same amount each second, it is accelerating by the same amount each second (uniform acceleration).
Graph C shows that the velocity increases by a larger amount each second, the acceleration is increasing (nonuniform acceleration).
Since gradient $=\frac{\Delta y}{\Delta x}$ and $\mathrm{y}=$ velocity and $\mathrm{x}=$ time \rightarrow gradient $=\frac{\Delta v}{\Delta t} \rightarrow$ gradient $=$ acceleration area $=$ base x height \rightarrow area $=$ time x velocity $\rightarrow \quad$ area $=$ displacement

This graph show the velocity decreasing in one direction and increasing in the opposite direction.
If we decide that \leftarrow is negative and \rightarrow is positive then the graph tells us:
The object is initially travels at $5 \mathrm{~m} / \mathrm{s} \rightarrow$
It slows down by $1 \mathrm{~m} / \mathrm{s}$ every second
After 5 seconds the object has stopped
It then begins to move \leftarrow
It gains $1 \mathrm{~m} / \mathrm{s}$ every second until it is travelling at $5 \mathrm{~m} / \mathrm{s} \leftarrow$

