Kinetic Theory Equations

To be able to list the assumptions needed to derive an equation for the pressure of a gas

To be able to derive an equation for the pressure of a gas

To be able to calculate the mean kinetic energy of a gas molecule

Assumptions

- 1. There are a very large number of molecules (*N*)
- 2. Molecules have negligible volume compared to the container
- 3. The molecules show random motion (ranges of speeds and directions)
- 4. Newton's Laws of Motion can be applied to the molecules
- 5. Collisions are elastic and happen quickly compared to the time between collisions
- 6. There are no intermolecular forces acting other than when they collide

The Big, Bad Derivation

The molecules move in all directions. Let us start with one molecule of mass m travelling with velocity v_x . It collides with the walls of the container, each wall has a length of L.

Calculate the change in momentum: before it moves with velocity v_x and after the collision it move with $-v_x$.

$$\Delta mv = (mv_x) - (-mv_x) \rightarrow \Delta mv = 2mv_x$$
 Equation 1

The time can be given by using distance/speed: the speed is v_x and the distance is twice the length of the box

(the distance to collide and then collide again with the same wall) $t = \frac{2L}{Equation 2}$

Force can be calculated by:
$$F = \frac{\Delta mv}{\Delta t}$$
 Substitute in Equation 1 and 2 \rightarrow $F = \frac{2mv_x}{\left(\frac{2L}{v_x}\right)} \rightarrow F = 2mv_x \cdot \left(\frac{v_x}{2L}\right)$

→
$$F = \frac{mv_x^2}{L}$$
 Equation 3, gives the force of one molecule acting on the side of the container

We can now calculate the **pressure** this one molecule causes in the x direction:

$$p = \frac{F}{A}$$
 Substituting Equation 3 $\Rightarrow p = \frac{mv_x^2}{L^2} \Rightarrow p = \frac{mv_x^2}{L^3} \Rightarrow p = \frac{mv_x^2}{V}$ Equation 4

(If we assume that the box is a cube, we can **replace** L^3 with V, both units are m³) All the molecules of the gas have difference speeds in the x direction. We can find the pressure in the x

direction due to them all by first using the mean value of v_x and then multiplying it by N, the total number of 2 _____2

molecules:
$$p = \frac{mv_x^2}{V} \rightarrow p = \frac{mv_x^2}{V}$$
 $\left[p = \frac{Nmv_x^2}{V} \right]$ Equation 5

 \rightarrow $\overline{c^2} = \overline{v_x^2} + \overline{v_x^2} + \overline{v_x^2}$ But since the average $\rightarrow c^2 = 3\overline{v_x^2}$ **Equation 5** gives us the pressure in the x aire The mean speed in all directions is given by:

We can substitute this into the **Equation 5** for pressure above:

directions are equal:

$$p = \frac{Nmv_x^2}{V} \rightarrow pV = Nmv_x^2 \rightarrow pV = Nm\frac{\overline{c^2}}{3} \rightarrow pV = \frac{1}{3}Nm\overline{c^2}$$
 Equation 6

Kinetic Energy of a Gas

From the equation we have just derived we can find an equation for the mean kinetic energy of a gas:

Since
$$pV = \frac{1}{3}Nmc^2$$
 and $pV = nRT$ combine these to get $\left[\frac{1}{3}Nmc^2 = nRT\right]$ Equation 7

Kinetic energy is given by $E_K = \frac{1}{2}mv^2$ so we need to make the above equation look the same.

$$\frac{1}{3}Nm\overline{c^2} = nRT \quad \Rightarrow \quad \frac{1}{3}m\overline{c^2} = \frac{nRT}{N} \quad \Rightarrow \quad m\overline{c^2} = \frac{3nRT}{N} \quad \Rightarrow \qquad \frac{1}{2}m\overline{c^2} = \frac{3nRT}{2N}$$

$$n = \frac{N}{N_A} \rightarrow N_A = \frac{N}{n} \rightarrow \frac{1}{N_A} = \frac{n}{N} \qquad \frac{1}{2}mc^2 = \frac{3RT}{2N_A}$$

Don't forget that cheeky chap Boltzmann $k = \frac{R}{N_A} \rightarrow \frac{1}{2}mc^2 = \frac{3}{2}kT$ Equation 8