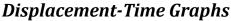
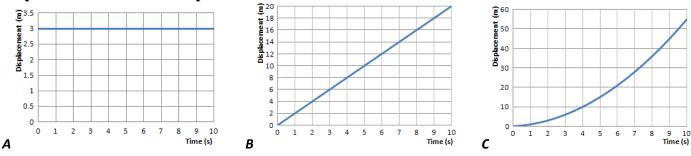
Motion Graphs

To be able to interpret displacement-time and velocity-time graphs To be able to represent motion with displacement-time and velocity-time graphs To know the significance of the gradient of a line and the area under it.

Gradient

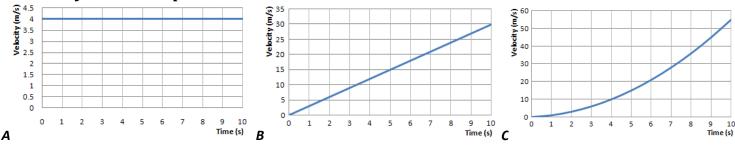

We calculate the gradient by choosing two points on the line and calculating the change in the y axis (up/down) and the change in the x axis (across). Δy


 Δx

Area Under Graph

At this level we will not be asked to calculate the area under curves, only straight lines. We do this be breaking the area into rectangles (base x height) and triangles (½ base x height).

gradient =



Graph A shows that the displacement stays at 3m, it is stationary. Graph B shows that the displacement increases by the same amount each second, it is travelling with constant velocity.

Graph C shows that the displacement covered each second increases each second, it is accelerating.

Since
$$gradient = \frac{\Delta y}{\Delta x}$$
 and $y = displacement$ and $x = time \rightarrow gradient = \frac{\Delta s}{\Delta t} \rightarrow \boxed{gradient = velocity}$

Velocity- Time Graphs

Graph A shows that the velocity stays at 4m/s, it is moving with constant velocity.

Graph B shows that the velocity increases by the same amount each second, it is accelerating by the same amount each second (uniform acceleration).

Graph C shows that the velocity increases by a larger amount each second, the acceleration is increasing (nonuniform acceleration).

Since
$$gradient = \frac{\Delta y}{\Delta x}$$
 and y = velocity and x = time $\rightarrow gradient = \frac{\Delta v}{\Delta t} \rightarrow gradient = acceleration$
area = base x height \rightarrow area = time x velocity \rightarrow

0 -1 -2 -3 -4 -5 0 1 2 3 4 5 6 8 10 Time (s)

This graph show the velocity decreasing in one direction and increasing in the opposite direction.

.

www.physicstutoronline.co.uk/

If we decide that \leftarrow is negative and \rightarrow is positive then the graph tells us: The object is initially travels at 5 m/s \rightarrow It slows down by 1m/s every second After 5 seconds the object has stopped It then begins to move \leftarrow It gains 1m/s every second until it is travelling at 5m/s \leftarrow